最新圆锥体的体积说课稿 圆锥的体积说课教案

11299 分享 时间: 收藏本文

最新圆锥体的体积说课稿 圆锥的体积说课教案

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

圆锥体的体积说课稿 圆锥的体积说课教案篇一

(一)、圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。

内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。

(二)、教学目标

1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积

2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。

(三)、教学重点、难点和关键

重点:理解和掌握圆锥体积的计算公式。

难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。

以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。

2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。

(一)、导入课题

1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。

回答:(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?

这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。

2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积

(二)讲授新知

1、(1)引入新课

引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?

(2)教学圆锥体积公式

首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?

其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。

第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:v=1/3sh。

第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。

第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

练习:

填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。

2、教学应用体积公式计算体积(电脑出示题目)

①基本练习。一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。

②变式练习。只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?

③小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。

3、教学例3(出示例3)

例3:工地上有一些沙子,堆起来近似于一个圆锥,测得底面直径是4米,高是1.2米。这堆沙子大约有多少立方米?(得数保留两位小数。)

学生读题、想:要求这堆沙子大约有多少立方米,必须先求什么?(先分组讨论,再尝试练习,个别板演,然后集体评讲。)

通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

4、操作练习。

让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

(三)、巩固应用

1、做p27-28练习九的第3、4、7、8题,(学生练习,教师巡视,个别辅导,特别注意对学习有困难的学生的辅导。)

2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习)。

(四)全课总结,课外延伸。

让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。

总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.

圆锥体的体积说课稿 圆锥的体积说课教案篇二

我说课的内容是小学数学(人教课标版)六年级下册第二单元第二节“圆锥的体积”。本课是在学习了第一课时《圆锥的认识》后通过比较圆柱和圆锥而得出圆锥的体积的计算方法。下面我将从教材、教法、学法、教学模式、三生培养五方面加以说明。

数学课程标准强调,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度等方面得到进一步的发展。“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。是本单元的重点。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。六年级是小学阶段的最后一个学年,学生掌握的数学知识有一定的基础,逻辑思维能力有了一定的发展,学生在接受程度上,分析问题的能力上,以及语言表达能力上都有较明显的提高,这为理解本节课的知识提供了有力的条件。但因学生之间个性差异很大,所以本节课的教学也存在一些障碍。

根据课程标准的要求,教材的编排特点,学生的实际情况我确定的教学目标是:

1、情感目标:培养学生的探索精神、合作意识。

2、知识目标:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,运用公式计算以及解决生活中的问题。

3、能力目标:培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。

重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。

难点:圆锥体积计算公式的推导过程。

关键:公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。

为了能够使学生在情境中学习数学,在活动中体验数学因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。

本节课把多媒体演示引进课堂,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

教法和学法是相互联系的,“教”是为了更好地“学”,教学中充分体现出学生的主体作用,尽量让学生自己动手实践、自己想、自己说,想不到的,教师要从不同角度启发、引导学生去想,去发现。创设一定的问题情境,让学生的整个学习过程围绕着问题去观察,去讨论,去实验,去理解,去总结。

古人说:“授人之鱼,只供一餐所需;而给人之渔,终身受用不尽。”新课程要求学生不仅要“学会”,更要“会学”。本节课采用适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我利用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

本节课运用了小学数学情境———探究式教学模式。

(一)、创设情境、揭示问题

所谓的创设情境,就是指教师要在上课开始创设一种能调动学生先前经验,促进学生思维参与的探究氛围。本节课我创设了两种冰淇淋,怎么样买更合算的情景。这样做的目的,不只在于激趣,主要是让学生逐步形成一种数学的眼光,在面对现实问题时能够主动寻求用数学的方式来解决。

(二)探究发现,建立模型

这是学生构建新知识的重要一步,要帮助学生通过观察、实践、探索、思考、交流等活动、解释解决问题的基本策略,建立基本的数学模型。

1、直观引入,直觉猜想

在教学中,我首先让学生回忆,以前学过哪些物体的体积的计算,接着猜测圆锥可能与哪个物体的体积有关?再猜测他们之间存在着什么样的关系?这一环节目的是是为了让学生把已有的知识信息与新知识建立联系,为学生调整认知结构,构建新知识奠定基础。

2、实验探索,发现规律

这一环节是合作学习,引导学生分小组做实验总结出等底等高的情况圆锥的体积是圆柱体积的三分之一,最后根据圆柱体积的计算方法,引导学生试着总结圆锥体积的计算公式。这样,学生亲身经历、体验了知识的形成过程,从而使学生的思维能力、动手操作能力,总结概括能力,与人合作的意识都得到了提高。

3、启发引导,推导公式

这一环节首先让学生根据圆柱体积的计算方式推导出圆锥体积的计算方法,然后引导学生说一说,sh各表示什么?为什么要乘三分之一。这样使学生能更深入的理解。整个这一环节我一直本着引导学生主动建构知识的重要理念,引导学生通过自主探索、合作交流、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”。

(三)、理解应用,强化体验

因为学生在探究发现、建立模型中创造的数学知识,发现的数学方法,要有一个内化的过程,为了关注每一个孩子这一环节我设计的四个层次的练习。

【基本练习】

首先解决情境中的问题,到底买哪一种冰淇淋合算。然后计算圆锥冰麒麟和圆柱冰淇淋的体积。在计算圆锥冰淇淋的体积时,允许学生有选择的完成,这样对学生进行数量上和难易程度上的开放,不但关注了学困生,也促进了尖子升和特长生的发展。

【变式练习】

是一组判断题

【应用练习】

让学生解决生活中的问题。能够使学生对所学的知识再一次深化理解,并同时培养学生解决生活中问题的能力。

【综合练习】

把一个圆柱加工成一个最大的圆锥形零件。求削去的体积。

这是一道思维拓展题。首先引导学生独立思考,然后再解决问题,最后得出结论。这样,不但注重了新知识的结构化,而且使学生对知识得到进一步的拓展和延伸。

这样学生在应用中充分理解,加深了体验,使新建立的数学知识得到进一步强化。从而实现人人学习有价值的数学,不同的人在数学上得到不同的发展。

(四)、总结归纳,提升经验

这一环节主要引导学生对本节课的知识进行系统的归纳、还对探究发现的过程、方法、经验、进行了梳理。

在本节课的课后我布置了一项实践性的作业,让学生用硬纸板做一个圆锥,圆柱。要求是,圆锥和圆柱的体积相等。

操作实践是一个手脑并用的过程,是培养技能技巧,促进思维发展的一种有效手段。更是一种让学生继续获取知识的延伸性学习活动,能够提高学生的学习技能;培养学生的求知欲;巩固所学知识,扩大知识领域,并且产生知识迁移;培养学生的合作意识;让学生明白学习既没有时间限制,又没有空间限制,以培养学生良好的学习习惯。

在整个教学过程中,我力求照顾全体学生的学习感受,因材施教。学困生学习最基本的内容,优等生在达到课程标准要求的基础上,适当扩大知识面,拓展了思维。在教学中,简单的问题留给学困生,有难度的留给优等生,实验操作环节以强带弱,最后分层次练习,基本练习和变式练习,主要是关注学困生,同时也促进了尖子生的发展。应用练习和思维拓展主要是关注尖子生和特长生。从而使不同的学生在本节课得到不同的发展。

总之,本节课,以教材为主源,教师为主导,学生为主题,训练为主线,思维为核心,为了每个孩子的发展为宗旨,让学生在情境中学习数学,在活动中体验数学,这样,既重视了知识的形成过程,又重视了学生的思维的发展过程,是每个孩子都在获得新知识的过程中,提高了能力发展了思维。

这次教学大赛的要求是同题同构,目的是共同提高。我们六年组三个数学老师在选课上,备课上,制作课件中,到后来写教案设计,说课材料,真的是做到了合作。虽然是我们精心的准备了,但在教学中还是出现了很多的遗憾。

1、多媒体课件的制作和运用不是尽善尽美。

2、在三生培养中,对差生的关注不是很到位。

3、课堂中有浪费现象,造成了教学时间的紧张。

4、在小组合作中,学生的参与程度还有待提高。

在今后的工作中,一定要多听课、多学习、多研究、多总结、多反思、使今后四十分钟的数学课堂每一分都有效。

圆锥体的体积说课稿 圆锥的体积说课教案篇三

圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。

教学目标是:

1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。

教学重点是:掌握圆锥体积的计算方法。

教学难点是:理解圆锥体积公式的推导过程。

根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。

本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的强烈愿望。

a、动手操作

把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。

b、观察猜想

观察、比较圆柱体与圆锥体。

突破知识点(1)“等底等高”;让学生猜测圆柱体积与它等底等高的圆锥体积的关系。

突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。

c、实验求证

学生动手实验,小组合作探究圆锥体积的计算方法。

(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;

(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;

(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

通过学生演示、交流、讨论,得出圆锥体积的计算公式:

圆柱的体积等于与它等底等高的圆锥体积的3倍;

圆锥体积等于与它等底等高的圆柱的体积的1/3.

圆锥体积=底面积×高×1/3

这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

(1)以练习的形式出示例1。

例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

通过这道练习,巩固了所学知识。

(2)基础练习:求下面各圆锥的体积。

底面面积是7.8平方米,高是1.8米。

底面半径是4厘米,高是21厘米。

底面直径是6分米,高是6分米。

这道题是培养学生联

系旧知灵活计算的能力,形成系统的知识结构。

(3)出示例2。

在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是6米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?

通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

(4)操作练习。

让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。

圆锥体的体积说课稿 圆锥的体积说课教案篇四

1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

3、教学重、难点:

⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;

⑵教学难点:理解圆锥体积公式的推导过程。

4、教学目标:

⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;

⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。

1、实验转化法

有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

2、尝试练习法

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

本节课我设计了以下四个教学程序:

1、谈话导入

⑴出示圆柱:如果想知道这个容器的容积,怎么办?

⑵出示圆锥:如果想知道这个容器的容积,怎么办?

2、教学例五

⑴引导观察:这个圆柱和圆锥有什么相同的地方?

⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

⑶讨论:可以用什么方法来验证你的估计?

⑷分组验证;引导学生用适合的方法进行操作验证。

⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

⑹讨论:

①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?

②那怎么算出这个圆锥的容积呢?

③推导出圆锥体积的公式(师板书)。

④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

⑺完成“试一试”。

3、巩固练习

做“练一练”。

4、归纳总结

通过本节课你有什么收获?有哪些问题需要我们今后注意?

圆锥体的体积说课稿 圆锥的体积说课教案篇五

“圆锥的体积”是人教版小学数学第十二册第二单元的内容。是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体以及圆柱体这三种立体图形的基础上进行教学的。主要内容包括理解圆锥体积计算公式和公式的具体运用。学生掌握这些知识,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系,为学生学习初中的几何知识打下基础,同时也可提高学生运用所学的数学知识和方法解决简单实际问题的能力。

依据数学课程标准的理念,结合教材自身的特点和学生的认知规律,本节课需要达到的教学目标有以下几点:

1.通过实验,使学生理解和掌握求圆锥体积的计算公式,并能运用公式正确计算圆锥的体积。

2.培养学生初步的空间观念、观察、操作能力和逻辑思维能力。

3.向学生渗透“事物之间相互联系”及“理论来源于实践”的观点。

其中,教学重点是使学生理解和掌握圆锥体积的计算公式;难点是通过实验理解圆柱和圆锥等底等高时体积间的倍数关系。

根据本节课的内容特点,同时也为了更好的完成教学目标,突出重点、突破难点,本节课,我主要采取让学生做实验的方法,通过动手操作、直观演示,让学生在充分感知中主动获取知识,理解和掌握圆锥体积公式,这样就克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解的弊病。学生则在教师的引导下充分发挥自身的主体作用,通过自己的操作、实验、观察比较、讨论小结推导出圆锥体积的计算公式,从而初步学会运用实验的方法探索新知。

为了提高教学效率,课前需要准备好多媒体课件,并为每个小组准备一盆水及一个圆柱和两个圆锥,另外还要为每个小组准备实验记录表一份,

熟悉教材只是上好一节课的基础,而合理科学的教学程序才是上好一节课的关键。为了顺利完成本节课的教学任务,我精心设计了一下教学程序。主要分为以下几个环节:

一、情境引入;二、探究新知;三、综合归纳;四、合理应用;五、能力拓展;六、全课总结。

良好的导入是一节课成功的关键,它不仅能抓住学生的心弦,促使学生情绪高涨,步入智力兴奋状态,还有助于帮助学生获得良好的学习效果。

根据本节课圆锥体积公式的推导要用到等底等高的圆柱与圆锥这一具体情况,本环节我设计了这样一个情境:今天我们班来了一位新朋友:淘气。淘气想请同学们帮忙解决一个小问题,同学们愿意吗?事情是这样的:淘气的学校门口有一个卖瓜子的小摊,老板为了省事,不用称称着卖,而是用硬纸板做了两个容器,(大屏幕出示底为12。56平方厘米,高为6厘米的等底等高的圆柱和圆锥形容器)老板总是这样给同学们宣传:我的这两个容器,底一样高也一样,如果你用圆柱形容器买一元钱只能装一次,如果用圆锥形容器买一元钱则可以装两次。同学们,请你们帮淘气想一想,淘气应该用那种方法卖瓜子呢?问题抛出后,给同学们一定的思考时间,然后让同学们各抒己见。同学们的想法不同,当然答案也就不同,这是教师抓住时机再次提问:要想知道那种方法划算,必须怎么办?当学生提出计算体积时,就会发现所学知识不够用了,学生的求知欲望自然被调动起来,这时出示课题:圆锥的课题。

此时的学生极想知道圆锥体积的计算方法,这时教师给学生提出一个疑问:在我们学习圆柱体积时我们已经清楚:长方体、正方体、圆柱的体积都可以用底面积乘高求得,那么圆锥的体积能否用底面积乘高来求呢?学生通过观察等底等高的圆柱与圆锥不难发现,底面积乘高求得的是圆柱的体积,这时教师再加以引导:能否利用圆柱的体积来求圆锥的体积呢?为每组同学提供交流的时间,让学生明白,只要弄清它们之间的关系,就能利用圆柱的体积求出圆锥的体积。究竟它们的体积之间有什么关系呢?先将圆锥放入圆柱中估计一下。我们要让事实说话。

引导学生做实验发现等底等高的圆柱与圆锥体积之间的关系。为了保证实验能有序有效地开展,实验前要对学生提出明确的要求:

1、组长要明确分工,确定检测员、操作员、记录员。

2、各小组做两次实验,两次方法可以相同也可以不同,要保证实验过程及结果的准确性。

让学生做两次实验的目的,是让学生再次确定实验的结果。当学生完成后,请各组同学进行汇报交流。学生通过实验会发现在等底等高的情况下圆锥体积是圆柱体积的1/3。教师板书。为了再次向学生强调等底等高,教师可以问学生:你们的学具都等底等高吗?让各组学生举起自己的学具。老师发现我们各组之间的学具大小不同,结论怎么相同呢?使学生明白,在等底等高的情况下圆锥体积总是圆柱体积的1/3。这时教师再次质疑:如果不等底等高还会存在这层关系吗?小组之间交换圆锥再次做实验,再次强调等底等高。

利用板书,让学生观察,圆锥的体积我们可以怎样进行计算?得出公式:圆锥体积=底面积×高×1/3。

用字母表示:v=1/3sh

然后请同学们仔细阅读所得的结论,你认为哪些字、词比较关键?为什么?要求圆锥的体积必须知道哪些条件?对公式的.辨析不仅可以使学生深入理解公式,而且可以避免学生在运用公式时出现错误。

上课时的情境激发了学生的求知欲望,如果能够解决这一问题,一定能让学生获得成功的体验,因此本环节我安排学生解决的第一个问题是:采用哪种方法更划算?让学生利用条件计算圆柱与圆锥的体积。这样做不仅前后呼应,而且也能让学生再次深入理解圆锥的计算公式。

第二个问题,则是利用例2改编的一个情境:淘气的同学晶晶看到同学们帮淘气解决了问题,也想请同学们帮个忙,利用多媒体出示:麦收季节,晶晶家把收的小麦堆成了一个近似圆锥形的小麦堆,测得底面直径是4米,高是1。2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整数)。教师做简单引导:要解决这一问题必须先求什么?然后让学生独立完成,再利用展台展示个别学生的解题过程,并请学生谈一谈自己的解题思路。

此时学生可能已经有些满足,如果继续毫无意思的练习,必将降低其学习的积极性,为此这一环节我就将练习题起了两个有趣的名字:火眼金睛和智力大比拼,以此来激发学生的学习兴趣。同时培养学生用所学知识解决实际问题的能力。这实际上是对圆锥等于与它等底等高圆柱体积的1/3的又一次体会。

1、火眼金睛

火眼金睛其实是几道判断题,希望同学们能像孙悟空一样利用自己的火眼金睛能识别出几句话的对错呢。

1)、圆锥体积是圆柱体积的1/3。()

2)、如果圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。()

3)、等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3。()

通过这样几句话的判断,可以让学生深入的思考等底等高的圆柱与圆锥体积之间的关系,教师也可以从学生判断的正误上了解一下学生是否对这类应用题已经掌握。

2、智力大比拼

智力大比拼则是在判断题的基础上,来解决一道实际问题,题目是这样的:有一个高9厘米,底面积是20平方厘米的圆柱形容器,里面装满了水,用一个与它等底等高的实心圆锥挤压,最后能挤出多少水?还剩多少水?如果有学生不明白题意,可利用手中的学具进行直观演示。这样也更有利于学生理解等底等高的圆柱与圆锥体积之间的关系。

学生学了一节课,究竟学会了什么,让他自己说说看,当然,从学生的回答中教师也可以看出自己的教学任务是否完成,课上的是否成功。

周易 易经 代理招生 二手车 网络营销 旅游攻略 非物质文化遗产 查字典 社区团购 精雕图 戏曲下载 抖音代运营 易学网 互联网资讯 成语 成语故事 诗词 工商注册 注册公司 抖音带货 云南旅游网 网络游戏 代理记账 短视频运营 在线题库 国学网 知识产权 抖音运营 雕龙客 雕塑 奇石 散文 自学教程 常用文书 河北生活网 好书推荐 游戏攻略 心理测试 石家庄人才网 考研真题 汉语知识 心理咨询 手游安卓版下载 兴趣爱好 网络知识 十大品牌排行榜 商标交易 单机游戏下载 短视频代运营 宝宝起名 范文网 电商设计 免费发布信息 服装服饰 律师咨询 搜救犬 Chat GPT中文版 经典范文 优质范文 工作总结 二手车估价 实用范文 古诗词 衡水人才网 石家庄点痣 养花 名酒回收 石家庄代理记账 女士发型 搜搜作文 石家庄人才网 钢琴入门指法教程 词典 围棋 chatGPT 读后感 玄机派 企业服务 法律咨询 chatGPT国内版 chatGPT官网 励志名言 河北代理记账公司 文玩 语料库 游戏推荐 男士发型 高考作文 PS修图 儿童文学 买车咨询 工作计划 礼品厂 舟舟培训 IT教程 手机游戏推荐排行榜 暖通,电地暖, 女性健康 苗木供应 ps素材库 短视频培训 优秀个人博客 包装网 创业赚钱 养生 民间借贷律师 绿色软件 安卓手机游戏 手机软件下载 手机游戏下载 单机游戏大全 免费软件下载 石家庄论坛 网赚 手游下载 游戏盒子 职业培训 资格考试 成语大全 英语培训 艺术培训 少儿培训 苗木网 雕塑网 好玩的手机游戏推荐 汉语词典 中国机械网 美文欣赏 红楼梦 道德经 标准件 电地暖 网站转让 鲜花 书包网 英语培训机构 电商运营