小数的性质教案设计

雕龙文库 分享 时间: 收藏本文

小数的性质教案设计

小数的性质教案设计

小数的性质教案设计

在教学工作者实际的教学活动中,编写教案是必不可少的,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?下面是小编整理的小数的性质教案设计,仅供参考,欢迎大家阅读。

  小数的性质教案设计1

教学目标

1、引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。

2、培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力。

3、培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。

教学重点

让学生理解并掌握小数的性质。

教学难点

能应用小数的性质解决实际问题。

教学过程

一、激趣导入

1、小组交流“商品标价记录单”,请两名学生上来展示。

2、电脑出示1:某超市手套、毛巾的标价,导入新课。

(在某超市商店里,老师看到:手套每双2.50元,毛巾每条2.5元。这里的2.50元、2.5元分别是( )元( )角,它们的价钱相同,为什么写法可以不同呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。)

3、揭示学习目标。

问:看到“小数的性质”这个课题,你认为这节课我们要学习什么内容?(结合学生回答,板书“性质”、“应用”)

二、探究新知

(一)理解小数的性质

1、做一做 做一做 1,得出 0.30=0.3

做一做 2,得出0.6=0.60=0.600

2、引导观察(思考讨论)0.6=0.60=0.600

(1)从左往右看,小数末尾有什么变化?小数大小有什么变化?

(2)从右往左看,小数末尾有什么变化?小数大小有什么变化?你能得出什么结论?

(启发学生归纳出:在小数的末尾填上“0”,小数的大小不变;在小数的末尾去掉“0”,小数的大小不变。)

3、归纳小数的性质:

通过研究,你能把上面的两个结论归纳成为一句话吗?

教师概括:在小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。

(在整数的末尾添上或去掉“0”,整数的大小会有什么变化?)

4、辨别:下面各数中的“

0”,哪些“0”是属 于小数末尾 的“0”。

(电脑显示)

(二)小数的性质应用

(1)教学例1。

①设问导入。问:你认为小数的性质有什么作用?学生很容易回答出小数性质的第一个作用。教师强调,根据这个性质,遇到小数末尾有0的时候,一般地可以去掉末尾的0,把小数化简。 (板书“化简”)

②投影出示例1,让学生尝试练习。

把0.90和205.0800化简

思考:哪些“0”可以去掉,哪些“0”不能去掉?

205.0800中“8”前面的“0”为什么不能去掉?

(0.90=0.9;205.0800=205.08 )

完成“练一练” 第1题

(2)教学例2。

①让学生解答导入新课中提出的问题,结合学生回答,教师说明:利用小数的性质,根据需要可以“把一个数改写成具有指定小数位数的小数”。(板书“改写”)

②投影出示例2,学生尝试练习。

不改变数的大小,把0.3、4.06、8改写成小数部分是三位的小数。

(0.3=0.300; 4.06=4.060; 8=8.000)

思考:“8”的后面不加小数点行吗?为什么?

完成“练一练” 第2题

③ 讨论:改写小数时一定要注意什么?

改写小数时一定要注意下面三点: A.不改变原数的大小; B.只能在小数的末尾添上0; C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0 。

(三)学生看书质疑。

三、巩固练习

1、练习十七 第1题

重点指导学生说一说为什么有些“0”不能去掉的。

2、练习十七 第2题

重点指导学生说一说为什么有些数的末尾添上“0”,原数就发生了变化。

3、综合练习 (电脑显示)

四、课末回顾、反思

  小数的性质教案设计2

【教学内容】

【教学目标】

【教学重点】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

难点:用“四舍五入”法按要求求出小数近似数。

【教学过程】

一、揭示课题

这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

二、复习小数的意义

1、做期末复习第8题(1)、(2)、(3)。

(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

(2)说一说小数的意义是什么?

问:一位小数、两位小数、三位小数……各表示几分之几的数?

2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

(2)填空。

0.1里面有( )个0.01。 10个0.001是( )。

10个0.1是( )。 0.1里有( )个0.01。

三、复习小数的性质和小数的大小比较

1、练习。

(1)把下面小数化简。

4.700 16.0100 8.7100 14.00

(2)不改变数的大小,把下面的数写成两位小数。

4.2 13.121

①学生做,指名板演,集体订正。

②问:做题时是根据什么来做的?什么是小数的性质?

2、做期末复习第9题,第1竖行两题。

(1)学生在书上做,指名板演,集体订正。

(2)让学生说一说怎样比较两个小数的大小。

3、做期末复习第10题。

(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

0.1 0.012 0.102 0.12 0.021

(2)按要求从小到大排列。

四、复习小数点位置移动引起小数大小变化的规律

1、做期末复习第8题(4)、(5)。

(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

(2)学生练习,指名回答。

2、练习。

(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

五、复习求小数的近似数和整数的改写

1、把下面小数精确到百分位。

0.834 2.786 3.895

(1)学生做,指名板演。

(2)让学生说一说怎样求一个小数的近似数。

2、(1)把下面各数改写成“万”作单位的数。

486700521000

(2)把下面各数改写成“亿”作单位的数。

460000000 7189600000

学生在练习本上做,指名板演,说一说怎样把一个较大数改写

成“万”或“亿”作单位的数。

3、把下面各数改写成“万”作单位的数,并保留一位小数。

67100209500

(1)学生在练习本上做,指名板演。

(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

4、做期末复习第9题剩下的两题。

(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

(2)学生练习,集体订正。

(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

了。

5、做期末复习第11题。

学生在书上做,并说明理由。

六、全课总结

这节课复习了什么内容?

怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

【作业设计】

1、0.45表示( )。

2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

4、在○里填“”、“”或“=”。

16.36○16.63 0.36万○3600

0.97○1.01 0.23亿○2100万

5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

10000千克稻谷可出大米多少千克?

  小数的性质教案设计3

教学目标

1.使学生对数的整除的有关概念掌握得更加系统、牢固.

2.进一步弄清各概念之间的联系与区别.

3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

4.掌握分数、小数的基本性质.

教学重点

通过对主要概念进行整理和复习,深化理解,形成知识网络.

教学难点

弄清概念间的联系和区别,理解易混淆的概念.

教学步骤

一、铺垫孕伏.

教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

二、探究新知.

(一)建立知识网络.【演示课件数的整除】

1.思考:哪个概念是最基本的概念?并说一说概念的内容.

反馈练习:

在123=4 48=0.5 20.l=20 3.20.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.

教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

2.说出与整除关系最密切的概念,并说一说概念的内容.

反馈练习:下面的说法对不对,为什么?

因为155=3,所以15是倍数,5是约数. ( )

因为4.62=2.3,所以4.6是2的倍数,2是4.6的约数. ( )

明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

3.教师提问:

由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

根据一个数所含约数的个数的不同,还可以得到什么概念?

互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

4.讨论互质数与质数之间有什么区别?

互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

5.教师提问:

如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

只有什么数才能做质因数?

什么叫做分解质因数?

只有什么数才能分解质因数?

6.教师提问:

谁还记得,能被2、5、3整除的数各有什么特征?

由一个数能不能被2整除,又可以得到什么概念?

(二)比较方法.

1.练习:求16和24的最大公约数和最小公倍数.

2.思考:求最大公约数和最小公倍数有什么联系和区别?

(三)分数、小数的基本性质.

1.教师提问:

分数的基本性质是什么?

小数的基本性质是什么?

  小数的性质教案设计4

【教学内容】

九年义务教育六年制小学数学教科书(人教版)第八册第100—101页例1—例4。

【教材简析】

小数的性质是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。教学时,要通过比较、辨析、抽象、概括等一系列的`思维活动,帮助学生理解和掌握小数的性质。

【教学过程】

一、创设情境,引导探索

1.找等量关系。

教师首先板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)你能想办法使它们相等吗?学生在教师的启发下,回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。板书写成:1分米=10厘米=100毫米。

2.思考探索。

(1)你能把它们改用“米”作单位表示吗?

(2)改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)

板书如下:

(3)按箭头所指的方向观察三个小数有什么变化?

使学生初步认识小数的末尾添上“0”或去掉“0”,小数的大小不变。

二、观察比较,引导发现

1.让学生观察投影出示的正方形等分图(见下图),回答老师的提问:

(1)把这个正方形看作整数“1”,这个正方形平均分成了多少份?(10份)这样的一份用小数表示是多少?(0.1)这样的三份呢?(0.3)叠片演示由图(1)成图(2)。(板书:0.3)

(2)叠片演示由图(2)成图(3)后问:现在这样来分,把这个正方形平均分成了多少份?(100份)阴影部分占多少份?(30份)用小数表示是多少?(板书:0.30)

(3)(再次演示叠片图(2)→图(3))小数由0.3到0.30,引导学生去思考:你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

2.引导学生观察等式“0.3=0.30”,从中发现:小数的末尾添上“0”,小数的大小不变。

教师板书:

再要求学生从右往左看,发现:小数的`末尾去掉“0”,小数的大小不变。(板书)

3.提醒注意:性质中的“末尾”跟一般说的“后面”是不同的。

4.判断练习。

下面的数中,那些“0”可以去掉?

3.9 0.300 1.8000 500

5.780 0.0040 102.020 60.06

三、推理板书,指导运用

1.教师结合板书内容讲解性质的运用。

(1)根据小数的性质,当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)

化简下面各小数:

0.40 1.850 2.900 0.50600

0.090 10.830 12.000 0.070

引导学生说出化简后的小数是什么?(板书)

(2)有时根据需要,可以在小数末尾添上“0”。(例如:0.3→0.30)

出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?

让学生同桌两人议论后答出。

提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。

最后完成如下板书:

2.学生质疑问难,教师及时释疑。

四、多层练习,巩固深化

1.选择题。(在正确答案下面的圈内涂上黑色)

化简102.020的结果是( )

12.2 12.02 102.0200 102.02

○ ○ ○ ○

要求学生回答:化简的依据是什么?

2.判断题。(打“√”,错的打“×”)

(1)0.080=0.8 ( )

(2)4.01=4.100 ( )

(3)6角=0.60元 ( )

(4)30=30.00 ( )

(5)小数点后面添上“0”或去掉“0”,小数的大小不变。 ( )

让学生按顺序回答,并说出判断的依据是什么?

3.下面的每组数中,一共可以去掉多少个“0”?这些0都在什么位置?

(1)3.09 0.300 1.8000 5.00

(2)0.0004 12.002 60.06 500

(3)0.090 12.00001 0.50605060 30.0

要求学生思考后,按顺序回答。

4.(1)改写。

原数

0.7

7

70

改写成一位小数

改写成两位小数

改写成三位小数

(2)连线。把相等的数用直线连起来。

10.01 20.1 4 4.800 50.00 1.60

50 10.010 16.0 4.0 4.8

要求学生独立完成,然后抽查评讲,检查全班练习效果。

5.做游戏。

(1)智力游戏。谁能只动两笔,就可以在5、50、500之间划上等号。(50变成5.0,500变成5.00)

(2)贴数游戏。让自愿参加的十位学生,每人拿一个数(卡片),教师板书“50.3”,要求学生在“50.3”的下面贴上与它相等的数,不相等的贴在旁边。

50.03 5.30 5.3 50.300

50.30 503 50 五十又十分之三

500.3

五、课堂作业

教科书练习二十一第4、5题。

六、课堂小结

[围绕性质的内容组织多种形式的练习,加强学生对小数性质的理解运用,练习在游戏时达到高潮。整个教学设计的观点明确,结构严谨,层次分明,使学生步步深入地学好小数的性质。